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Self-consistent expansion for the Kardar-Parisi-Zhang equation with correlated noise
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A minor modification of the self-consistent expansi@CE for the Kardar-Parisi-Zhan@KPZ) system with
uncorrelated noise is used to obtain the exponents in systems where the noise has spatial long-range correla-
tions. Ford-dimensional systems with correlations of the foB{r— ", t—t’')=2D|F—F'|>*~95(t—t'),

(p>0), we find a lower critical dimensiody(p)=2+2p, above which a perturbative Edwards-Wilkinson
(EW) solution appears. Below the lower critical dimension two solutions exist, each in a different, distinct
region ofp. For smallp’s the solution of KPZ with uncorrelated noise is recovered. For latga p-dependent
solution is found. The existence of only one solution in each regiop if not a result of a competition
between two solutions but a direct outcome of the SCE equdi8i#063-651X99)16310-4

PACS numbeps): 81.15.Lm, 05.40-a, 68.35-p

The field of disorderly surface growth is today one of the[9,10,11, SOS[11,17, and direct integration of the KPZ
most interesting and challenging fields in nonequilibrium sta-equation[9]), confirmed that hypothesis. The noise we con-
tistical mechanics. Within this field, nonequilibrium rough- sider obeys
ening has received much attention. The first continuum equa-
tion used to study the growth of interfaces by particle (n(F,1))=0, (2
deposition was the Edwards-Wilkinson mod@&Ww) [1],
which describes the dynamics of the interface by a nois@nd
driven diffusion equation. This model actually describes a
process known as random depositid®D) with surface re-
laxation, and forms a distinct universality class in growth
phenomena. Before long, it was clear that an extension og
this model was needed because of the nonlinear character 0
many deposition processes, such as ballistic depogED),
solid-on-solid depositiofSOS, and Eden growth. The first
extension of the EW equation to include nonlinear terms wa
proposed by Kardar, Parisi, and Zhaf®], who suggested
the addition of a nonlinear term proportional to the square o
the height gradient.

(n(FOn(F',1)=2Do|F —F'|>~95(t—t"), (3

hered+ 1 is the dimension of the syste(d is the dimen-

n of the surface

Medinaet al.[13] used dynamical renormalization-group
(RG) analysis to study the KPZ equation with the above
noise. One important result is that Galilean invariance is not
%jestroyed by spatially correlated noise, so the scaling rela-
%ion a+z=2 remains valid (the scaling of ([h(x,t)
—h(0,0)]) is given by x?#f(t/x?), wherez=alB, f(X)
~x2P for x<1. z is called the dynamic exponend; the
roughness exponent, amglthe growth exponent As a re-

dh ) ) . sult, there is only one independent exponent, and it is suffi-
. vVeh+g(Vh)“=»(f,1), 1) cient to gives:
(d—2)?
where h is the height atf measured relative to its spatial 12-8d—(d—2)2 0<p=po
average, and; is the fluctuation of the rate of deposition. B= , (4)
The KPZ equation is believed to belong to the same uni- (2p—d+2) e
versality class as BD, SOS, and the Eden model—that is, in (d+4-2p) PO=P=Pc

general dimension, different from the EW universality class.
Although the KPZ equation cannot be solved due to its nonwhere po=d(d—2)/8(d—3/2) (po=3 for d=1), and p,
linear character, the problem is exactly solvable in one di=(d+1)/2 (p.=1 for d=1). It must be said that although
mension[3]. The exponents describing the roughness of théhe results of this analysis are at first sight formulated for any
surface and the roughening process are known in two dimergimension, they give a sensible approximation for the scaling
sions to a high accuracy from numerical simulatipdk exponents only fod=1, where at least fop=0 the result is

It follows, however, that in some experimental situationsthe exact result. For higher dimensions, however, even the
the measured scaling exponents are larger than the valuessults forp=0 display a discrepancy with the results of
predicted by KPZ5,6]. A reason for that could be the un- simulations. An interesting aspect of that calculation, how-
correlated nature of the noise assumed in the original KP2ver, is that forp<pgy, the long-range correlation is irrel-
model. In many systems, spatial correlations may exist, givevant. On the other hand, fpe>p., higher order nonlineari-
ing rise to scaling exponents different from those predictedies become relevant, hence the RG analysis collapses.
by KPZ[7,8]. Numerical investigations, concerning discrete  The one-dimensional predictions have been checked nu-
one-dimensional models with spatially correlated ndBB merically. Some simulations have found good agreement
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with the exponents obtained in Refl3]. Hayot and The expansion is formulated in terms @f; and wq,
Jayaprakasfl4] found that these results extend even beyondvhere ¢, is the two-point function in momentum space, de-
the region of validity of the RG analysis, that is in simula- fined by ¢,=(h4h_g)s, (the subscripSdenotes steady state
tions for p>p.. Yet others, like Pengt al. [9] found sys-  averaging, andw, is the characteristic frequency associated
tematic deviations from the predicted values. with hg.

Later theoretical efforts also led to the RG results. Halpin-  We expect that for small enough ¢, andw, are power
Healy [15] investigated an equivalent problefdirected laws ing,
polymer in random medjausing functional RG methods,
finding complete agreement with the RG results of Medina ¢)q:Aq‘F (7)
et al.

Another line of research, which led to different scaling and
exponents, was taken by Zhaf$6] who used a replica
method to study the equivalent directed-polymer problem wq=Bg". (8)
(DP) with correlated noise. He obtained in one dimension
[Since dynamic surface growth is a remarkably multidisci-

(1+2p) 0<p<L plinary field, there are almost as many notations as there are
(3+2p) 2 workers in the field. Therefore we give a brief translation of
B= (1+2p) (5 our notations to those most frequently used in this field:
1
— §<p$1
(5-20) n=z, ©
Finally, Hentschel and Family17] studied the scaling
behavior for dissipative dynamical systems and proposed a _I'—d 10
new relation in one dimension, a="5 (10
= ——— 0<p<=3. 6 a I'-d
P=a2p 0= © T v

Penget al. [9] compared numerical results fde=1 and
theoretical predictions of RG analysi&3], to Zhang[16] The method produces, to second order in this expansion,
and Hentschel and Fami[t7]. It turned out that the numeri- two nonlinear coupled integral equationsdy andwg, that
cal results agree better with Hentschel and Family’s prediccan be solved exactly in the asymptotic limit to yield the
tion than with Zhang's prediction. Another interesting point required scaling exponents governing the steady state behav-
was that forp> 1, the numerical results agree very well with i0r and the time evolution.
EW with correlated noise. This result might suggest that for In fact, most of the discussion that appears in the previous
sufficiently largep, the KPZ equation behaves like the linear Paper[19] is general, and need not be revised. We are going
theory even ford=1. Yet, this possibility is not consistent O generalize the discussion of Schwartz and Edwards to a
with any of the above-mentioned methods, which actuallysituation where the correlation function of the noise is given
predict that the critical dimensiofabove which the KPZ by Egs.(2) and (3). This implies that in the consistency
equation behaves lineajlshould be even higher than two requirement fokb,, D is to be replaced bpoq~ %, result-
for p>0, and not vice versa. Hence, no EW behavior should"d In
be seen fod=1.
Most of the work described above is concerned with a Dod 2= v g +11(0) ¢pq+12(q) =0. (12
one-dimensional system where the exponents are exactly
known for a very long time in the uncorrelated caseThe Herring consistency equati¢R0] for wq is
(p=0). The discrepancy among the various resultd-atl
and finitep, and the fact that fod>1 the theoretical results, wq—vg?+J(q)=0. (13
even forp=0, are obviously quite far from the numerical
simulations, suggest that an independent approach should b fact, Herring’s definition ofw, is one of many possibili-
used to try and clarify the issue. ties, each leading to a different consistency equation. But it
In this paper we apply a method previously used bycan be shown, as previously done[i®], that this does not
Schwartz and Edward48,19 concerning the KPZ equation. affect the exponentauniversality.)
The advantages of that method dig it gives reasonable  The functionsl1(q), 1,(q), andJ(q) are given by
exponents fop=0 above one dimensiorii) the modifica-

tion needed to consider the correlated case instead of the 2g°? p - (g—1)
uncorrelated one is minor and therefore the discussion ex- l1(aq)= (Zw)dj o+ oy to
tremely simple; andiii) as will be seen later, in each region q q

of p, there is a well-defined single solution. X[T-Gep+(G— r).qng_l], (14)
The method is based on changing from the KPZ equation

in Langevin form to a Fokker-Planck form and constructing 22 [F-(G-D72

a self-consistent expansion of the distribution of the field | = f gy 1 1 B 15

concerned. 2(a) (2m)0 o1+ wq_ 1+ g d1pg-1, (19
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o (G=1)
w|+wq_|

[T-Gpy+(G—T)-Gpgi]-
(16)

2 2

Notice that we must requird+2—1>0 for the integral
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pared to the second terffor small g's). The conclusion is
pu=2 and—2p=2—1T". This result is the exact result in the
case of the Edwards-Wilkinson modgéinear model with
correlated noise. By definition of the sector it follows that
this can happen only fal>2+4p.

J(q) to converge. The only modification of the uncorrelated ~Sector 8 is defined byd+2—I"—u>0 andd+4-2I

equations is thab is replaced byDq~ 2.

We are interested in Eq&l2) and(13) for smallg's only.
So we break up the integraléq) andJ(q) into the sum of
two contributions! ~(q), J”(q) and1<(q), J=(q), corre-
sponding to domains of integration, with high and low
momentum, respectively. We expahd(q) andJ”(q) for
small g's and retain only the leading terms. Equatidi®)
and(13) reduce now to

Do 2+ Ap— (v— A1) Q2+ 15 (Q) g+ 15 (0) =0,
(17

and

wq— (v—A3)g*+J=(q)=0. (18

— u<0. In this sector, Eq(21) is replaced by

Do 2+ A~ (v—A;—ADAG " +Cyg?t 47T r=0,
(23

The last term on the left-hand side of this equation is negli-
gible compared to the third term, due to the defining condi-
tion d+2—T"—x>0. It also appears from the two defining
conditions that 2-I"<0, so that the second term is also neg-
ligible compared to the third term. Therefore, a possible new
solution in this sector appears whem2p=2—T", which is
again just the EW solution. Since E@2) is unchanged, here
also u=2, which implies that this solution exists only if 2
+2p<d<2+4p.

Combining the results for sectossand 8, we see that the
EW solution is possible only fod>2+2p. Therefore, the

At the mere price of renormalizing some constants in bothower critical dimension isl. =2+ 2p.

equations, we are left with the integrdls(q), 15 (q), and
J=(q) that can be calculated explicitly for smalk (just like
in [19]), since for smal([|’s, the power law form forp, and
wy (Or ¢q_1 and wq_1) [Egs. (7), (8)] can be used. The
integralsl;~(q) andJ=(qg) can now be evaluated

q° for d+2—-T'—u>0,
17(9),d5(q)a qzln% for d+2-T'—u=0,
qdt4- T~ for d+2-T'—u<O0,
(19
and
const ford+4—-2I'=u>0,
15(q)a constln% for d+4—2I-u=0, (20

qi*4=2 e for d+4—2I—u<0,

whereq, is the upper cutoff of the sma|l| region.

We consider now the upper-right quadrant of {figu)
plane, where a solution may be expected. The lide2
—I'—u=0 andd+4—2I"— =0 divide the quadrant into

Sectory is defined byd+2—T'—u<0 andd+4-2I"
—u>0. In this sector, Eq21) is replaced by
Dod P+ A— (v—ApDAGT " +Cq@* 4 k=0, (29
The two equations defining the sector imply that the two last
terms on the left-hand side of the equation are negligible
compared with the constant. So in order to get a solution we
must havep=0, andDy+ A,=0, which is impossible, be-
causeD, and A, are both positive definite, and anyhow we
are dealing withp>0.

Sector § is defined byd+2—T—u<0 andd+4-2I"
—u<0. In this sector, Eqg17) and(18) take the form

Dod ™ 2 +A;— (v=ApAG* "

29°> A?

. d+4-2I'—p_—
+(2—7T)d B F(I',u)q 0,

(29

and

2
g* A e
Bq”—(v—Ag)q2+—d(2 ) 5G(Twgt 4 r=0,

four sectors. Next, we investigate each sector separately #§hereF(L'.x) is given by

decide whether a solution of Eg&l7) and (18) can exist
there or not(in the limit of smallq’s).

Sector« is defined byd+2—-T—u>0 andd+4-2I"
—u>0. In this sector, Eq9.17) and (18) reduce to

Do 2P+ A+ Aj—(v=A—ADAG '=0 (21

and

Bq— (v~ Ag—AG2=0. (22

(26)
F(r,ﬂ)z—f ddt&[f-é-t*
[t“+|e—t|*+1]
+(@—t)-&|e—t| "]
+f ddt [{ (é_f)]z t_F‘lé_ﬂ_Fv
[tH+|e—t|“+1]
(27)

Notice that in general a new result can be obtained only for

p>0, since forp<0 the termDyq 2* is negligible com-

andG(I',u) by the following:
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f.(e=1) Note that the applicability of the method is limited po
G(FaM):f dit ———[t-e-t " <(d+1)/2, sincel’ must be less thad+ 2 in order to have
[t4+|&—t|~] J(q) convergent.
We now give a translation of these results to the fre-
+(&—1) @& |e— f|*F] ) (28) quently used notation:
€ is a unit vector in an arbitrary direction, and tﬁdntegra- I —d d
tion is over alld-dimensional space. —°% — 0<p mau<+0 __1,p0]
Equation(26) leads, just as in the original paplr9], to _ d+4-T 2 29
the scaling relatiord+4—1"-2u=0. The defining condi- | (2p—d+2) d » (29
tionsd+2—T"—u<0 andd+4-2I'—u<0 allows us to (d+4—2p) maX{O,i—l,Po}<P$Pc

neglect the second and the third terms in &%) compared
to the last term.

We are now facing two possible solutions. Either the lastwherepy=(3I'g—d—4)/4, p.=(d+1)/2, andl', is the ex-
term on the left-hand side of the equation dominates over thponent obtained in the uncorrelated césich is the solu-
first term, or they have the same powergoin the first case, tion of the transcendental equati&fl’, u(I")]=0).
the exponent” will be given by the solution of the equation In this paper we presented a straightforward generaliza-
FLI',u(I")]=0, whereu(I') is related tol" by the scaling tion of a self-consistent expansion for the KPZ equation

relation = (d+4-T)/2. The exponents are thus exactly to include correlated noise characterized BYr—r")
theI'y and uy obtained for the uncorrelated cagilote that  _ D |F— ;,|zp—d. In one dimension we recover the result of

. . — o
I'y and u( are the solutions of the transcendental equation s qina et al. [13]. For d>1 we still find that for small

FrEF,M(F)]IZQ. I;or hea?nlpzle, md one d|r3_en3|or_1 it can be enoughp the long-range correlations are irrelevant but the
S oyvnlanalm ytica yfth 0=4 an !nltwo_émgnsb?/ns anu- 5ctual results are quite different, reducingatO to a much
merical solution of the equation yield$=2.59.) We must more sensible result. For example, tb# 2 the RG result is

remember, however, that such a solution is obtained by regz_ [13], numerical results suggeStbetween 0.2 and 0.25
quiring that the last term on the left-hand side dominatefdf] and o’ur result i8=0.17 ' '

over the first one. This yields a necessary condition for th We also find that above(p)=2+2p, a weak coupling

Eixf;zn(;:e of sugh .? S°|IUt'.°np<f’0(d):[E’F.O(d)_db EW solution becomes possible. These results are still in dis-
h V4. Orf?pgl(ﬂ_)’é a so Ut'?n exists at all, it mudslt. € agreement with Penet al.[9], who find in one dimension an
the new solutionl’=(d+4+4p)/3. A necessary condition EW behavior for largep, but are in agreement with the

that allows s'uch a solution i; that the coefficientgof” in smallerp's of Hentschel and Familj17]. This discrepancy
Eq. (29 vanishes, but that is possible only FLI', ()] K35 1o be clarified in the future. At present, we feel that the

<0. The functionF[I', u(I')] changes sign al'=I'o(d),  asymptotic regime probably has not been reached due to the
and it turns out that foF’>T'¢(d), it becomes negative. This harameters used in the numerical simulations of the KPZ
implies at once that fop<py(d), the only solution isI’

equation.
=TI"y(d). Namely, the long-range correlation is not relevant. a
For p>po(d), the new solution]'=(d+4+4p)/3, exists, This work was supported by a grant from the German
and it is the only one in that region ef Israeli FoundatioGIF).
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