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Self-consistent expansion for the Kardar-Parisi-Zhang equation with correlated noise
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A minor modification of the self-consistent expansion~SCE! for the Kardar-Parisi-Zhang~KPZ! system with
uncorrelated noise is used to obtain the exponents in systems where the noise has spatial long-range correla-
tions. For d-dimensional systems with correlations of the formD(rW2rW8,t2t8)52D0urW2rW8u2r2dd(t2t8),
(r.0), we find a lower critical dimensiond0(r)5212r, above which a perturbative Edwards-Wilkinson
~EW! solution appears. Below the lower critical dimension two solutions exist, each in a different, distinct
region ofr. For smallr’s the solution of KPZ with uncorrelated noise is recovered. For larger’s a r-dependent
solution is found. The existence of only one solution in each region ofr is not a result of a competition
between two solutions but a direct outcome of the SCE equation.@S1063-651X~99!16310-4#

PACS number~s!: 81.15.Lm, 05.40.2a, 68.35.2p
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The field of disorderly surface growth is today one of t
most interesting and challenging fields in nonequilibrium s
tistical mechanics. Within this field, nonequilibrium roug
ening has received much attention. The first continuum eq
tion used to study the growth of interfaces by partic
deposition was the Edwards-Wilkinson model~EW! @1#,
which describes the dynamics of the interface by a no
driven diffusion equation. This model actually describes
process known as random deposition~RD! with surface re-
laxation, and forms a distinct universality class in grow
phenomena. Before long, it was clear that an extension
this model was needed because of the nonlinear charact
many deposition processes, such as ballistic deposition~BD!,
solid-on-solid deposition~SOS!, and Eden growth. The firs
extension of the EW equation to include nonlinear terms w
proposed by Kardar, Parisi, and Zhang@2#, who suggested
the addition of a nonlinear term proportional to the square
the height gradient.

]h

]t
2n¹2h1g~¹h!25h~rW,t !, ~1!

where h is the height atrW measured relative to its spatia
average, andh is the fluctuation of the rate of deposition.

The KPZ equation is believed to belong to the same u
versality class as BD, SOS, and the Eden model—that is
general dimension, different from the EW universality cla
Although the KPZ equation cannot be solved due to its n
linear character, the problem is exactly solvable in one
mension@3#. The exponents describing the roughness of
surface and the roughening process are known in two dim
sions to a high accuracy from numerical simulations@4#.

It follows, however, that in some experimental situatio
the measured scaling exponents are larger than the va
predicted by KPZ@5,6#. A reason for that could be the un
correlated nature of the noise assumed in the original K
model. In many systems, spatial correlations may exist, g
ing rise to scaling exponents different from those predic
by KPZ @7,8#. Numerical investigations, concerning discre
one-dimensional models with spatially correlated noise~BD
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@9,10,11#, SOS @11,12#, and direct integration of the KPZ
equation@9#!, confirmed that hypothesis. The noise we co
sider obeys

^h~rW,t !&50, ~2!

and

^h~rW,t !h~rW8,t !&52D0urW2rW8u2r2dd~ t2t8!, ~3!

whered11 is the dimension of the system~d is the dimen-
sion of the surface!.

Medinaet al. @13# used dynamical renormalization-grou
~RG! analysis to study the KPZ equation with the abo
noise. One important result is that Galilean invariance is
destroyed by spatially correlated noise, so the scaling r
tion a1z52 remains valid „the scaling of ^@h(x,t)
2h(0,0)#2& is given by x2a f (t/xz), where z5a/b, f (x)
;x2b for x!1. z is called the dynamic exponent,a the
roughness exponent, andb the growth exponent…. As a re-
sult, there is only one independent exponent, and it is su
cient to giveb:

b5H ~d22!2

1228d2~d22!2 0,r<r0

~2r2d12!

~d1422r!
r0,r<rc

, ~4!

where r05d(d22)/8(d23/2) (r05 1
4 for d51), and rc

5(d11)/2 (rc51 for d51). It must be said that althoug
the results of this analysis are at first sight formulated for a
dimension, they give a sensible approximation for the sca
exponents only ford51, where at least forr50 the result is
the exact result. For higher dimensions, however, even
results forr50 display a discrepancy with the results
simulations. An interesting aspect of that calculation, ho
ever, is that forr,r0 , the long-range correlation is irrel
evant. On the other hand, forr.rc , higher order nonlineari-
ties become relevant, hence the RG analysis collapses.

The one-dimensional predictions have been checked
merically. Some simulations have found good agreem
5677 © 1999 The American Physical Society
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with the exponents obtained in Ref.@13#. Hayot and
Jayaprakash@14# found that these results extend even beyo
the region of validity of the RG analysis, that is in simul
tions for r.rc . Yet others, like Penget al. @9# found sys-
tematic deviations from the predicted values.

Later theoretical efforts also led to the RG results. Halp
Healy @15# investigated an equivalent problem~directed
polymer in random media! using functional RG methods
finding complete agreement with the RG results of Med
et al.

Another line of research, which led to different scalin
exponents, was taken by Zhang@16# who used a replica
method to study the equivalent directed-polymer probl
~DP! with correlated noise. He obtained in one dimension

b5H ~112r!

~312r!
0,r< 1

2

~112r!

~522r!
1
2 ,r<1.

~5!

Finally, Hentschel and Family@17# studied the scaling
behavior for dissipative dynamical systems and propose
new relation in one dimension,

b5
1

~322r!
0,r< 1

2 . ~6!

Penget al. @9# compared numerical results ford51 and
theoretical predictions of RG analysis@13#, to Zhang@16#
and Hentschel and Family@17#. It turned out that the numeri
cal results agree better with Hentschel and Family’s pre
tion than with Zhang’s prediction. Another interesting po
was that forr. 1

4 , the numerical results agree very well wi
EW with correlated noise. This result might suggest that
sufficiently larger, the KPZ equation behaves like the line
theory even ford51. Yet, this possibility is not consisten
with any of the above-mentioned methods, which actua
predict that the critical dimension~above which the KPZ
equation behaves linearly! should be even higher than tw
for r.0, and not vice versa. Hence, no EW behavior sho
be seen ford51.

Most of the work described above is concerned with
one-dimensional system where the exponents are exa
known for a very long time in the uncorrelated ca
(r50). The discrepancy among the various results atd51
and finiter, and the fact that ford.1 the theoretical results
even for r50, are obviously quite far from the numeric
simulations, suggest that an independent approach shou
used to try and clarify the issue.

In this paper we apply a method previously used
Schwartz and Edwards@18,19# concerning the KPZ equation
The advantages of that method are~i! it gives reasonable
exponents forr50 above one dimension;~ii ! the modifica-
tion needed to consider the correlated case instead of
uncorrelated one is minor and therefore the discussion
tremely simple; and~iii ! as will be seen later, in each regio
of r, there is a well-defined single solution.

The method is based on changing from the KPZ equa
in Langevin form to a Fokker-Planck form and constructi
a self-consistent expansion of the distribution of the fi
concerned.
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The expansion is formulated in terms offq and vq ,
wherefq is the two-point function in momentum space, d
fined byfq5^hqh2q&S , ~the subscriptSdenotes steady stat
averaging!, andvq is the characteristic frequency associat
with hq .

We expect that for small enoughq, fq andvq are power
laws in q,

fq5Aq2G ~7!

and

vq5Bqm. ~8!

@Since dynamic surface growth is a remarkably multidis
plinary field, there are almost as many notations as there
workers in the field. Therefore we give a brief translation
our notations to those most frequently used in this field:

m5z, ~9!

a5
G2d

2
, ~10!

b5
a

z
5

G2d

2m
. ~11!

The method produces, to second order in this expans
two nonlinear coupled integral equations infq andvq , that
can be solved exactly in the asymptotic limit to yield th
required scaling exponents governing the steady state be
ior and the time evolution.

In fact, most of the discussion that appears in the previ
paper@19# is general, and need not be revised. We are go
to generalize the discussion of Schwartz and Edwards
situation where the correlation function of the noise is giv
by Eqs. ~2! and ~3!. This implies that in the consistenc
requirement forfq , D0 is to be replaced byD0q22r, result-
ing in

D0q22r2nq2fq1I 1~q!fq1I 2~q!50. ~12!

The Herring consistency equation@20# for vq is

vq2nq21J~q!50. ~13!

„In fact, Herring’s definition ofvq is one of many possibili-
ties, each leading to a different consistency equation. Bu
can be shown, as previously done in@19#, that this does not
affect the exponents~universality!.…

The functionsI 1(q), I 2(q), andJ(q) are given by

I 1~q!5
2g2

~2p!d E ddl
lW•~qW 2 lW !

v l1vq2 l1vq

3@ lW•qW f l1~qW 2 lW !•qW fq2 l #, ~14!

I 2~q!5
2g2

~2p!d E ddl
@ lW•~qW 2 lW !#2

v l1vq2 l1vq
f lfq2 l , ~15!
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J~q!5
2g2

~2p!d E ddl
lW•~qW 2 lW !

v l1vq2 l
@ lW•qW f l1~qW 2 lW !•qW fq2 l # .

~16!

Notice that we must required122G.0 for the integral
J(q) to converge. The only modification of the uncorrelat
equations is thatD0 is replaced byD0q22r.

We are interested in Eqs.~12! and~13! for smallq’s only.
So we break up the integralsI (q) andJ(q) into the sum of
two contributionsI .(q), J.(q) and I ,(q), J,(q), corre-
sponding to domains oflW integration, with high and low
momentum, respectively. We expandI .(q) and J.(q) for
small q’s and retain only the leading terms. Equations~12!
and ~13! reduce now to

D0q22r1A22~n2A1!q2fq1I 1
,~q!fq1I 2

,~q!50,
~17!

and

vq2~n2A3!q21J,~q!50. ~18!

At the mere price of renormalizing some constants in b
equations, we are left with the integralsI 1

,(q), I 2
,(q), and

J,(q) that can be calculated explicitly for smallq’s ~just like
in @19#!, since for smallu lWu ’s, the power law form forf1 and
v1 ~or fq21 and vq21) @Eqs. ~7!, ~8!# can be used. The
integralsI i

,(q) andJ,(q) can now be evaluated

I 1
,~q!,J,~q!aH q2 for d122G2m.0 ,

q2 ln
q0

q
for d122G2m50 ,

qd142G2m for d122G2m,0,
~19!

and

I 2
,~q!aH const for d1422G2m.0 ,

const ln
q0

q
for d1422G2m50 ,

qd1422G2m for d1422G2m,0,

~20!

whereq0 is the upper cutoff of the smallu lWu region.
We consider now the upper-right quadrant of the~G,m!

plane, where a solution may be expected. The linesd12
2G2m50 andd1422G2m50 divide the quadrant into
four sectors. Next, we investigate each sector separate
decide whether a solution of Eqs.~17! and ~18! can exist
there or not~in the limit of smallq’s!.

Sectora is defined byd122G2m.0 and d1422G
2m.0. In this sector, Eqs.~17! and ~18! reduce to

D0q22r1A21A282~n2A12A18!Aq22G50 ~21!

and

Bqm2~n2A32A38!q250. ~22!

Notice that in general a new result can be obtained only
r.0, since forr,0 the termD0q22r is negligible com-
h

to

r

pared to the second term~for small q’s!. The conclusion is
m52 and22r522G. This result is the exact result in th
case of the Edwards-Wilkinson model~linear model! with
correlated noise. By definition of the sector it follows th
this can happen only ford.214r.

Sectorb is defined byd122G2m.0 and d1422G
2m,0. In this sector, Eq.~21! is replaced by

D0q22r1A22~n2A12A18!Aq22G1C2qd1422G2m50.
~23!

The last term on the left-hand side of this equation is ne
gible compared to the third term, due to the defining con
tion d122G2m.0. It also appears from the two definin
conditions that 22G,0, so that the second term is also ne
ligible compared to the third term. Therefore, a possible n
solution in this sector appears when22r522G, which is
again just the EW solution. Since Eq.~22! is unchanged, here
also m52, which implies that this solution exists only if 2
12r,d,214r.

Combining the results for sectorsa andb, we see that the
EW solution is possible only ford.212r. Therefore, the
lower critical dimension isdc5212r.

Sectorg is defined byd122G2m,0 and d1422G
2m.0. In this sector, Eq.~21! is replaced by

D0q22r1A22~n2A1!Aq22G1C8qd1422G2m50. ~24!

The two equations defining the sector imply that the two l
terms on the left-hand side of the equation are negligi
compared with the constant. So in order to get a solution
must haver50, andD01A250, which is impossible, be-
causeD0 andA2 are both positive definite, and anyhow w
are dealing withr.0.

Sectord is defined byd122G2m,0 and d1422G
2m,0. In this sector, Eqs.~17! and ~18! take the form

D0q22r1A22~n2A1!Aq22G

1
2g2

~2p!d

A2

B
F~G,m!qd1422G2m50, ~25!

and

Bqm2~n2A3!q21
2g2

~2p!d

A

B
G~G,m!qd142G2m50,

~26!

whereF(G,m) is given by

F~G,m!52E ddt
tW•~ ê2 tW !

@ tm1uê2 tWum11#
@ tW•ê•t2G

1~ ê2 tW !•ê•uê2 tWu2G#

1E ddt
@ tW•~ ê2 tW !#2

@ tm1uê2 tWum11#
•t2G

•uê2 tWu2G,

~27!

andG(G,m) by the following:
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G~G,m!5E ddt
tW•~ ê2 tW !

@ tm1uê2 tWum#
@ tW•ê•t2G

1~ ê2 tW !•ê•uê2 tWu2G# . ~28!

ê is a unit vector in an arbitrary direction, and thetW integra-
tion is over alld-dimensional space.

Equation~26! leads, just as in the original paper@19#, to
the scaling relationd142G22m50. The defining condi-
tions d122G2m,0 and d1422G2m,0 allows us to
neglect the second and the third terms in Eq.~25! compared
to the last term.

We are now facing two possible solutions. Either the l
term on the left-hand side of the equation dominates over
first term, or they have the same power ofq. In the first case,
the exponentG will be given by the solution of the equatio
F@G,m(G)#50, wherem~G! is related toG by the scaling
relation m5(d142G)/2. The exponents are thus exact
the G0 andm0 obtained for the uncorrelated case.~Note that
G0 and m0 are the solutions of the transcendental equat
F@G,m(G)#50. For example, in one dimension it can b
shown analytically thatG052, and in two dimensions a nu
merical solution of the equation yieldsG052.59.) We must
remember, however, that such a solution is obtained by
quiring that the last term on the left-hand side domina
over the first one. This yields a necessary condition for
existence of such a solution,r,r0(d)5@3G0(d)2d
24#/4. For r.r0(d), if a solution exists at all, it must be
the new solutionG5(d1414r)/3. A necessary condition
that allows such a solution is that the coefficient ofq22r in
Eq. ~25! vanishes, but that is possible only ifF@G,m(G)#
,0. The functionF@G,m(G)# changes sign atG5G0(d),
and it turns out that forG.G0(d), it becomes negative. Thi
implies at once that forr,r0(d), the only solution isG
5G0(d). Namely, the long-range correlation is not releva
For r.r0(d), the new solution,G5(d1414r)/3, exists,
and it is the only one in that region ofr.
e
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Note that the applicability of the method is limited tor
,(d11)/2, sinceG must be less thand12 in order to have
J(q) convergent.

We now give a translation of these results to the f
quently used notation:

b5H G02d

d142G0
0,r<maxH 0,

d

2
21,r0J

~2r2d12!

~d1422r!
maxH 0,

d

2
21,r0J ,r<rc

, ~29!

wherer05(3G02d24)/4, rc5(d11)/2, andG0 is the ex-
ponent obtained in the uncorrelated case„which is the solu-
tion of the transcendental equationF@G,m(G)#50….

In this paper we presented a straightforward general
tion of a self-consistent expansion for the KPZ equat
to include correlated noise characterized byD(rW2rW8)
5D0urW2rW8u2r2d. In one dimension we recover the result
Medina et al. @13#. For d.1 we still find that for small
enoughr the long-range correlations are irrelevant but t
actual results are quite different, reducing atr50 to a much
more sensible result. For example, ford52 the RG result is
b50 @13#, numerical results suggestb between 0.2 and 0.25
@4#, and our result isb50.17.

We also find that abovedc(r)5212r, a weak coupling
EW solution becomes possible. These results are still in
agreement with Penget al. @9#, who find in one dimension an
EW behavior for larger, but are in agreement with th
smallerr’s of Hentschel and Family@17#. This discrepancy
has to be clarified in the future. At present, we feel that
asymptotic regime probably has not been reached due to
parameters used in the numerical simulations of the K
equation.
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